

Activities in the field of Fast Reactors Research and Technology Developments in Mexico 49th Meeting of the TWG-FR

Armando Gomez Torres, Federico Puente Espel

Instituto Nacional de Investigaciones Nucleares armando.gomez@inin.gob.mx, federico.puente@inin.gob.mx

26.05.2016

Outline

- Introduction.
- Activities 2015.
- Recent activities.
- National and international nuclear energy policies.
- Conclusions.

Introduction

- Mexico was accepted as observer in the TWG-FR in 2014.
- Two Mexican representatives:
 - Armando Gomez and Federico Puente
- As a first step, together with IAEA, a Fast Reactors education and training seminar was organized.
- The mexican universities doing academic studies have been identified and the creation of a Mexican Fast Reactors research group as part of the AZTLAN project is ongoing.

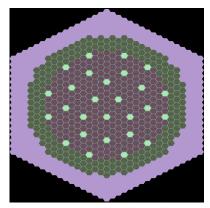
Education and training seminar on Fast Reactors

Education and training seminar on Fast Reactors

Visit of experts to ININ after FR seminar

- In 2014, a common research national project led by ININ was approved.
- ▶ In 2015, a subgroup on Fast Reactors have been created and all organizations are working together.

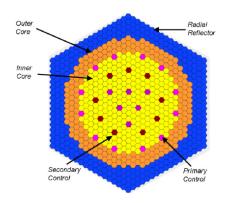
Mexican platform for nuclear reactor's simulation and design


The research ongoing in the institutions:

- National Institute for Nuclear Research (ININ): Neutronics with SERPENT and own tools, participation in the UAM-SFR Benchmark.
- ▶ National Polytechnic Institute (IPN): Neutronics with SERPENT and development of own tools.
- National Autonomous University of Mexico (UNAM): Neotronics with SERPENT, MCNP and KNEXT
- Metropolitan Autonomous University (UAM): Thermalhydraulics with own tools.

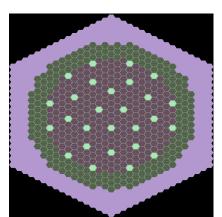
As a result from a visit to CEA Cadarache and thanks to Dr. Alfredo Vasile, Dr. Christian Latge and Dr. Gerald Rimpault, ININ was accepted to participate in the UAM-SFR Benchmark.

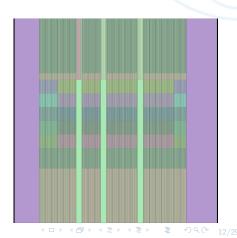
First calculations have been done with SERPENT


Benchmark for Neutronic Analysis of Sodium-Cooled Fast Reactor Cores with Various Fuel Type and Core Sizes.

Cores included in the benchmark:

- ► CAR-3600
- ► MOX-3600
- ► MET-1000
- ► MOX-1000




CAR-3600 Core

- ▶ (U,Pu)C Fuel
- ▶ 487 fuel assemblies in two zones (286 + 201)
- 270 radial reflector assemblies
- 27 control assemblies in two independent systems (18 + 9)

3600-CAR Core in Serpent

Preliminary Results 3600 MW Cores

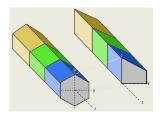
MOX-3600				
XS	AZTLAN	Benchmark	Benchmark	
Library	K-EFF	Av. K-EFF	Std. Dev	
JEFF 3.1.1 1.03428 1.0138 0.00405				
ENDFB7	1.02932	1.0138	0.00405	

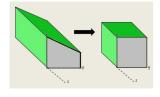
CAR-3600			
XS	AZTLAN	Benchmark	Benchmark
Library	K-EFF	Av. K-EFF	Std. Dev
JEFF 3.1.1	1.00913	1.0090	0.0062
ENDFB7	1.00326	1.0090	0.0062

ININ

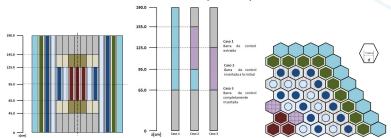
Preliminary Results 3600 MW Cores

MOX-3600			
XS AZTLAN* Benchmark Av. Univ. Illinois*			
Library	Void Worth	Void Worth	Void Worth
JEFF 3.1.1 1423.9 1937 1559			
ENDFB7	1423.9	1937	1569

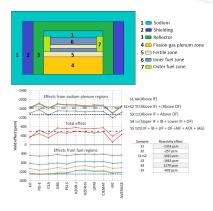

CAR-3600			
XS AZTLAN* Benchmark Av. Univ. Illinois			
Library	Void Worth	Void Worth	Void Worth
JEFF 3.1.1	1577	2120	1464
ENDFB7	????	2120	1750

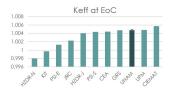

^{*} AZTLAN Team used SERPENT 2.1.20 with setpot 1000000 330 30 and fixed seed.

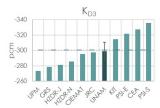
^{**} No information about version of SERPENT, setpop or seed used.


Development of a 3D diffusion module AZNHEX, solves numerically the time dependent neutron diffusion equations in Hexagonal-Z geometry.

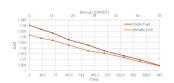
Gordon-Hall transfinite interpolation to each one of the four quadrants to transform it in a cube.

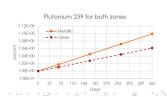

Benchmark for Reactor FBR (KNKII).


	AZNHEX	PARCS	PCM
Case 1	1.048129	1.074046	2413.0
Case 2	0.957055	0.958441	144.6
Case 3	0.843969	0.844319	401.4

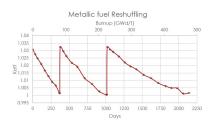

Neutronic Study of a Sodium cooled Fast Reactor

- At the National Autonomous University of Mexico a validation of a developed ASTRID-like nuclear reactor model has been developed with accurate results.
- Reactivity at End of Cycle, Doppler constants and sodium void worth were analyzed with successful results.



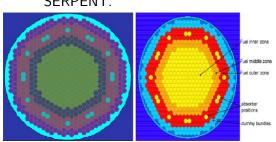

Neutronic Study of a Sodium cooled Fast Reactor

Metallic vs. Oxide fuel in ASTRID design



Breed and burn strategies

- Different strategies for enhancing the fuel utilization are analyzed, such as the reshuffling fuel strategy.
- Different core configurations without loading fresh fuel are studied.

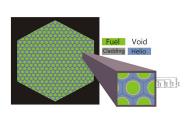


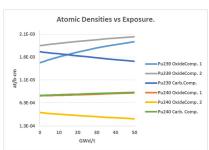
Recent activities **UNAM**

Neutronic Study of a Lead cooled Fast Reactor

 Analyze the breeding capability and MA transmutation, comparing the MOX base fuel with Nitride fuel, using SERPENT.

Keff at BoC		
Taget value Serpent value		
1.0136	1.0134	

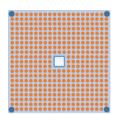

Transmutation analysis of nuclear waste in a Gas Fast Reactor


▶ Minimize nuclear waste via transmutation of minor actinides

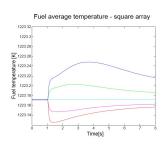
Nuclide	[at/b-cm]		
	Oxide Composition 1	Oxide Composition 2	Carbide Composition
U235	5.42E-05	4.97E-05	5.67E-05
U238	2.14E-02	1.96E-02	7.94E-03
Np237	1.70E-04	2.05E-04	0.00E+00
Pu239	1.51E-03	1.88E-03	1.75E-03
Pu240	7.85E-04	1.33E-03	7.93E-04
Pu241	3.10E-04	4.20E-04	3.34E-04
Pu242	2.38E-04	4.67E-04	1.51E-04
Am241	1.43E-04	3.16E-04	0
Am243	5.93E-05	1.23E-04	0
Cm244	1.96E-05	6.50E-05	0
Oxigene	4.95E-02	4.94E-02	0
Graphite	0	0	8.531E-02

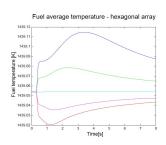
	Final (at 50 GWd/t) - Initial (at 0 GWd/t)			
	Oxide Composition 1 Delta (at/b/cm)	Oxide Composition 2 Delta (at/b/cm)	Carbide Composition Delta (at/b/cm)	
U235	-2.42E-05	-1.81E-05	-1.71E-05	
U238	-1.64E-03	-1.21E-03	-3.76E-04	
Np237	-5.58E-05	-5.47E-05	1.61E-06	
Pu239	4.55E-04	1.88E-04	-2.11E-04	
Pu240	6.36E-05	-2.05E-05	6.66E-05	
Pu241	-1.17E-04	-1.33E-04	-9.09E-05	
Pu242	-5.84E-06	-2.15E-05	6.43E-06	
Am241	-2.84E-05	-6.09E-05	3.79E-05	
Am243	2.06E-06	-3.60E-08	1.13E-05	
Cm244	1.28E-05	1.14E-05	1.53E-09	

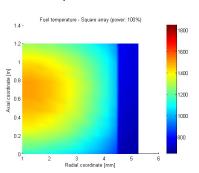
Transmutation analysis of nuclear waste in a Gas Fast Reactor

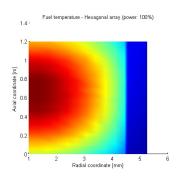


Paper presented in PBNC 2016: Transmutation analysis of nuclear waste in a Gas Fast Reactor, Ricardo Reyes Ramírez, et. al.


Simulation of thermal-fluid process in lead-cooled fast reactors


- Using as a reference the reactor ELSY (European Lead-cooled System)
- ▶ Development a code to describe the process in the core
- Reproduction of analysis in the core and compare between square and hexagonal arrays:


Fuel average temperature comparisons between square and hexagonal array with different coolant flow



Fuel temperature comparison between square and hexagonal array, nominal power of 100 %

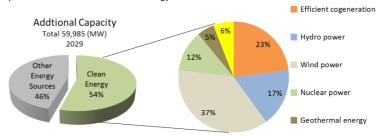
National and international nuclear energy policies

Nuclear status in Mexico

- One Nuclear Power Plant "Laguna Verde" with two BWR-5 reactors.
 - ▶ 4% of installed capacity.
 - ▶ 3-5 % of generated electricity.

- One national research centre: ININ.
- ► The regulatory body: CNSNS.
- Five academic institutions with nuclear programs.

National and international nuclear energy policies


Nuclear status in Mexico

- ▶ In 2013, the national energy strategy pointed out that Nuclear Power would play an important role in electricity production.
- ▶ In 2014, a big energy reform in Mexico opened the electricity production in Mexico to the private sector (Energy sector was exclusive from state).
- ► However, nuclear energy remains being exclusive from state.
- ► Thus, decisions on increasing nuclear power still are taken by the government.

National and international nuclear energy policies

Nuclear status in Mexico

The PRODESEN 2015-2029 established three new reactors, this will represent 12% of total clean energy.

Conclusions

- The acceptance of Mexico in the TWG-FR is a great opportunity to extend the knowledge of the nuclear research institute in Fast Reactors (traditionally focused on light water reactors).
- After one year, significant steps have been done in the Fast Reactors area.
- In the short term, Mexico, and particularly the institutions taking part on the AZTLAN platform project, will be able to participate much more actively in the international Fast Reactors community.
- ► The seminar and the Mexican Fast Reactors group will contribute to the human resources with background on Fast Reactors in Mexico

END

Thanks a lot for your attention