Análisis de resultados de los códigos AZTRAN y AZKIND para un BWR

Guillermo Elías Bastida Ortiz, Julio Amhed Vallejo Quintero, Juan Galicia Aragón, Juan Luis François Lacouture

> Universidad Nacional Autónoma de México, Facultad de Ingeniería Departamento de Sistemas Energéticos Av. Universidad 3000, C.U., 04510 México, D.F.

gbo729@yahoo.com.mx; amhedjvq@gmail.com; blink19871@hotmail.com; jlfl@fi-b.unam.mx

José Vicente Xolocostli Munguía, Andrés Rodríguez Hernández, Armando Miguel Gómez Torres

Instituto Nacional de Investigaciones Nucleares Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, México, 50180

vicente.xolocostli@inin.gob.mx; andres.rodriguez@inin.gob.mx; armando.gomez@inin.gob.mx

Resumen

En este trabajo se presenta un análisis de resultados obtenidos de simulaciones realizadas con el código de transporte de neutrones AZTRAN y el código cinético de difusión de neutrones AZKIND, basado en comparaciones con modelos correspondientes a un típico BWR, con el fin de verificar el comportamiento y confiabilidad de los valores obtenidos con dicho código para su actual desarrollo. Para esto se hicieron simulaciones de diferentes geometrías haciendo uso de códigos nucleares ya validados, como CASMO, MCNP5 y SERPENT. Los resultados obtenidos se consideran adecuados ya que son comparables con los obtenidos y reportados con otros códigos, basados principalmente en el factor de multiplicación de neutrones y la distribución de potencia de los mismos.

1. INTRODUCCIÓN

El proyecto *AZTLAN Platform* [1] es una iniciativa nacional liderada por el Instituto Nacional de Investigaciones Nucleares, que reúne a las principales instituciones públicas de educación superior de México. Consiste en el desarrollo de una plataforma de modelación para el análisis y diseño de reactores nucleares. En este proyecto se pretende modernizar, mejorar e integrar los códigos neutrónicos, termohidráulicos y termomecánicos desarrollados en las instituciones nacionales, en una plataforma integrada, desarrollada y mantenida por expertos mexicanos.

El desarrollo de *AZTLAN Platform* está dividido técnicamente en 4 Grupos de Trabajo (GT), cada uno liderado por expertos en el tema de cada una de las instituciones participantes, Neutrónica, Termohidraúlica, Acoplamiento y Análisis de Sensibilidad e Incertidumbre y Grupo de Usuarios.

El presente trabajo es resultado de la participación del Grupo de Usuarios y al seguimiento, y uso, que éste le ha dado al proyecto AZTLAN, en específico a los módulos AZTRAN y AZKIND pertenecientes al Grupo de Trabajo 1 "Neutrónica", con el fin de proporcionar retroalimentación y sugiriendo prioridades de desarrollo al equipo de desarrolladores, así como promover la colaboración y sinergia entre las instituciones participantes, de esta forma, el beneficio tecnológico y económico de este desarrollo traerá consigo un fortalecimiento institucional en investigación.

2. CÓDIGOS.

Actualmente el proyecto está en su segundo año, después de haber seleccionado y modernizado códigos propios, tomando en cuenta como criterio de selección los códigos que más se apeguen al estado del arte actual, se ha iniciado el desarrollo y actualización de éstos para conformar la plataforma AZTLAN.

Las plataformas de simulación consideran un conjunto extenso de fenómenos físicos importantes en el diseño y seguridad de reactores nucleares, siendo los fenómenos más evidentes y medibles la fuente de calor por fisión, mecanismos de transferencia de calor al refrigerante, así como el comportamiento térmico y mecánico de los materiales que componen las barras de combustible bajo esfuerzos extremos que determinan la integridad de las barreras de seguridad en condiciones normales y anormales de operación. La neutrónica, la termohidráulica y el comportamiento termomecánico de los combustibles constituyen la base para realizar análisis de seguridad, diseño y análisis de reactores nucleares [2].

El diseño y operación de un reactor nuclear está relacionado con la capacidad de predecir la distribución de los neutrones en el sistema en función del espacio, el ángulo, la energía y el tiempo. El núcleo de un reactor es un sistema complejo, en el que se tienen diversos materiales como el combustible, las barras de control, las estructuras, el refrigerante, etc., por lo cual, resulta prácticamente imposible describir de forma analítica la distribución de neutrones, de manera que es necesario realizar los cálculos con programas de cómputo. En el mejor de los casos, se resuelve una ecuación integro-diferencial complicada, conocida como ecuación de transporte de Boltzmann, cuya solución es difícil y demandante de tiempo de cálculo, por lo tanto, se utilizan aproximaciones.

Se puede dar solución a la ecuación de transporte de dos formas: con métodos deterministas (P_1 , S_N , P_L , SP_L , etc.) o con métodos estocásticos, como el método de Monte Carlo.

El grupo 1 del proyecto AZTLAN es el encargado de abordar las soluciones por métodos deterministas, mediante el desarrollo de herramientas de cómputo (códigos) que cubren una amplia variedad de escenarios hasta el caso de considerar núcleos en tres dimensiones (3D), tanto en geometría XYZ como Hexagonal-Z. Los códigos en desarrollo son:

• AZTRAN. Resuelve la ecuación de transporte de neutrones en estado estacionario, geometría XYZ, en multigrupos y ordenadas discretas usando la aproximación nodal RTN-0.

- AZKIND. Resuelve la ecuación de difusión de neutrones dependiente del tiempo, geometría XYZ, en multigrupos, usando el método de elemento finito de Galerkin con la aproximación nodal RTN-0.
- AZNHEX. Resuelve la ecuación de difusión de neutrones dependiente del tiempo, geometría hexagonal-Z, en multigrupos, usando el método de elemento finito de Galerkin con la aproximación nodal RTN-0 y una transformación que permite convertir cada cuadrante de un hexágono en un cuadrado.

2.1 AZTRAN: Código de transporte 3D en coordenadas cartesianas

El código AZTRAN (**AZ**tlan **TR**ansport **N**eutronic code) es un código que resuelve la ecuación de transporte neutrones para varios grupos de energía en estado estacionario, en tres dimensiones, aproximando la dependencia angular por el método de ordenadas discretas y discretizando la dependencia espacial del flujo por el método nodal RTN-0. El código determina en forma numérica el factor de multiplicación efectiva k_{eff} , la distribución del flujo angular de neutrones en cada punto, dado el número de grupos de energía y regiones que caracterizan algún arreglo en particular.

La discretización es realizada por medio de:

- Energía: Teoría de Multigrupos.
- Espacial: Método nodal RTN-0.
- Angular: Aproximación S_N.

La aproximación en multigrupos significa que el intervalo de interés de la variable energía (típicamente de 0 a 15 [MeV] en un reactor nuclear de fisión) es dividido en G grupos o subintervalos.

El método de Ordenadas Discretas consiste en representar el dominio de la variable angular por un conjunto discreto de direcciones angulares. El conjunto de ecuaciones resultantes se le conoce como aproximación S_N .

El método nodal utilizado es el RTN-0, en el cual las variables a determinar son el promedio de la función incógnita en cada una de las caras de la celda, y el valor promedio de la función en cada una de las celdas en las que se discretiza el dominio [3].

La idea original de AZTRAN es poder realizar estudios neutrónicos de núcleos en tres dimensiones con ensambles de combustible de secciones transversales cuadradas típicos de reactores BWR y PWR.

2.2 AZKIND: Código de difusión 3D coordenadas cartesianas

El código AZKIND (**AZ**tlan **KI**netics in Neutron **D**iffusion) forma parte de las aplicaciones de análisis neutrónico de la plataforma AZTLAN, resuelve las ecuaciones de difusión de neutrones con dependencia en el tiempo, en coordenadas cartesianas (x, y, z). Tiene su origen en NRKin3D, diseñado para la simulación de la dinámica de reactores y éste se incorporó a la Plataforma AZTLAN como AZKIND, donde se le adicionó el cálculo en estado estacionario y se modernizó de F77 a F90/95, y se incorporó cálculo computacional de doble precisión, optimizando el uso y operaciones con arreglos. Finalmente, se verificó la modernización con la reproducción de resultados previos [4].

Para resolver las ecuaciones de difusión con dependencia en el tiempo en coordenadas cartesianas, AZKIND utiliza el método de Galerkin de elementos finitos y el esquema nodal RTN-0; hace una aproximación del flujo de neutrones con condiciones de frontera y continuidad, generando un sistema matricial de ecuaciones diferenciales, para obtener finalmente un sistema algebraico.

Las consideraciones y uso de archivos de entrada dependen de las opciones de cálculo y de la opción elegida para el procesamiento de cómputo:

- Únicamente simulación de un estado estacionario.
- Estado estacionario seguido de un transitorio.
- Simulación de un transitorio.

También es necesario definir ciertos parámetros como: materiales, condiciones de frontera, datos geométricos, *buckling*, número máximo de iteraciones numéricas, criterios de convergencia, coeficientes de difusión, secciones eficaces, entre otros.

3. SIMULACIÓN DE MODELOS

Los resultados se comparan con los obtenidos con los códigos CASMO-4 [5], HELIOS-1.5 [6], MCNP5 [7], SERPENT 2 [8] y SIMULATE-3 [9]. En particular, SERPENT es un código tridimensional de transporte neutrónico para física de reactores, basado en el método de Monte Carlo, de energía continua y cálculo de quemado, el cual, además de calcular los valores del factor de multiplicación de neutrones y distribución de potencia utilizados para la realización de este trabajo, es capaz de generar las secciones eficaces requeridas por AZTRAN y AZKIND (que no pueden generar por sí mismos) para la realización de los cálculos determinísticos.

Los modelos y simulaciones de este trabajo son una celda de combustible 8x8, un ensamble y un núcleo completo, todos correspondientes a un reactor de agua en ebullición (BWR por sus siglas en inglés). Todos simulados con AZTRAN y el modelo del núcleo completo también con AZKIND.

3.1 Casos de estudio.

El primer modelo realizado es una celda de combustible BWR 8x8, con UO_2 como combustible y ocho tipos de enriquecimiento, dos de ellos con gadolinia en su composición, en el centro se encuentran dos barras de agua y se tiene 40% de vacíos en el moderador. La Figura 1 muestra la geometría del modelo:

En la Figura 2 y Tabla I se describe la distribución y composición de las barras de combustible en la celda, respectivamente.

1	2	3	4	4	3	2	1
2	3	5	6	6	6	4	2
3	5	6	6	6	8	6	3
4	6	6	7	9	6	6	4
4	6	6	9	6	6	5	4
3	6	8	6	6	5	5	3
2	4	6	6	5	5	3	2

Figura 2. Distribución de materiales para el modelo de la celda de combustible.

	Temp [K]	Dens [g/cm ³]	U ²³⁵ [%]	U ²³⁴ [%]	U ²³⁸ [%]	O [%]	Gd ¹⁵² [%]	Gd ¹⁵⁴ [%]	Gd ¹⁵⁵ [%]	Gd ¹⁵⁶ [%]	Gd ¹⁵⁷ [%]	Gd ¹⁵⁸ [%]	Gd ¹⁶⁰ [%]
1	883	9.691	1.1460	0.0092	86.9949	11.8500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	883	9.691	1.4986	0.0120	86.6395	11.8500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	883	9.691	1.7630	0.0141	86.3729	11.8500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	883	9.691	1.9393	0.0155	86.1952	11.8500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	883	9.691	2.2919	0.0183	85.8398	11.8500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
6	883	9.691	2.6445	0.0212	85.4843	11.8500	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7	883	9.494	1.4386	0.0115	83.1739	11.9056	0.0069	0.0729	0.5036	0.7045	0.5428	0.8669	0.7729
8	883	9.447	1.4236	0.0114	82.3075	11.9195	0.0087	0.0911	0.6294	0.8806	0.6785	1.0836	0.9661

Tabla I.	Composición	de materiales	para el modelo) de la	celda de	combustible.
----------	-------------	---------------	----------------	---------	----------	--------------

Actualmente en el código AZTRAN sólo se pueden hacer geometrías paralepípedas, por tal motivo se realizó un modelo equivalente, lo más detallado posible para conservar la esencia del original. La Figura 3 muestra la geometría mencionada:

Figura 3. Geometría para el modelo de celda de combustible en AZTRAN.

En la Tabla II se muestran los resultados del factor infinito de multiplicación de neutrones para la celda de combustible, obtenidos con los diferentes códigos, y en el caso de SERPENT con diferentes librerías, para el caso de AZTRAN se utilizó la aproximación de ordenadas discretas S_4 .

	CASMO-4	SERPENT	SERPENT*	MCNP5*	HELIOS	AZTRAN
		JEFF-3.1	ENDF/B-7	ENDF/B-7/ JEFF-3.1	TILLIOD	
$\mathbf{k}_{\mathrm{inf}}$	1.11441	1.12500	1.12752	1.13261	1.10478	1.13691
%EE	1.607	0.672	0.449	0	2.457	0.379
	kinf -kint	F	·			

Tabla II.	Valores	de kine de	los d	diferentes	códigos	nara el	modelo	celda d	le combustible.
I abla III	v anoi co	uc Kim uc	100 0	and chico	courgos	paraci	moucio	ceiuu u	ic combustione.

 $\% EE = \left| \frac{k_{inf_{MCNP5}} - k_{inf}}{k_{inf_{MCNP5}}} \right| * 100$ * 10,000 historias simuladas, 230 ciclos, los primeros 30 descartados. En el modelo de MCNP5 se utilizaron dos librerías por falta de isótopos necesarios en ambas.

Tomando como referencia el valor obtenido con MCNP5, se puede apreciar que el porcentaje de error de los valores de kinf obtenidos con los diferentes códigos son bajos, teniendo al producido con AZTRAN entre los mejores. Cabe notar la variabilidad de los resultados producidos por el mismo código, en este caso SERPENT con tan sólo modificar la librería usada, también mencionar que los valores de SERPENT son los más cercanos a MCNP, esto probablemente debido ambos códigos están basados en el mismo método (Monte Carlo); de donde se destaca la importancia del código usado, así como la biblioteca empleada.

Recordando la siguiente distribución de materiales en donde los valores "7" y "8" (ver Tabla III) corresponden a pines de combustible que contienen UO_2 con gadolinia: Gd_2O_3 .

Tabla III. Distribución de materiales para el modelo de celda de combustible.

1	2	3	4	4	3	2	1
2	3	5	6	6	6	4	2
3	5	6	6	6	8	6	3
4	6	6	7	9	6	6	4
4	6	6	9	6	6	5	4
3	6	8	6	6	5	5	3
2	4	6	6	5	5	3	2
1	2	3	4	4	3	2	1

Se obtieron las siguientes distribuciones de potencia radial (ver Tabla IV), en donde se observa claramente la depresión de la potencia en las barras con gadolinia:

tible.
til

CASMO								 SERPENT	JEFF-3.1						
0.992	1.065	1.09	1.101	1.089	1.062	1.039	0.974	0.989	1.057	1.088	1.105	1.096	1.062	1.037	0.968
1.065	1.002	1.064	1.087	1.056	1.096	1.029	1.041	1.056	0.991	1.070	1.101	1.068	1.082	1.025	1.031
1.09	1.064	0.996	0.889	0.872	0.236	1.105	1.068	1.092	1.064	0.996	0.882	0.876	0.147	1.091	1.054
1.101	1.087	0.889	0.24	0	0.905	1.08	1.102	1.107	1.103	0.875	0.154	0	0.920	1.098	1.106
1.089	1.056	0.872	0	0.922	0.973	1.01	1.12	1.092	1.065	0.871	0	0.987	1.008	1.024	1.133
1.062	1.096	0.236	0.905	0.973	0.948	1.097	1.107	1.060	1.092	0.147	0.920	1.011	0.964	1.117	1.110
1.039	1.029	1.105	1.08	1.01	1.097	1.022	1.079	1.035	1.021	1.086	1.100	1.022	1.107	1.021	1.087
0.974	1.041	1.068	1.102	1.12	1.107	1.079	1.003	0.968	1.032	1.066	1.110	1.142	1.117	1.090	1.005

SERPENT	ENDF/B-7						
0.979	1.059	1.093	1.096	1.091	1.058	1.031	0.970
1.065	1.006	1.078	1.097	1.070	1.083	1.024	1.033
1.096	1.062	1.006	0.886	0.875	0.147	1.100	1.069
1.103	1.085	0.872	0.154	0	0.922	1.096	1.119
1.087	1.060	0.876	0	0.973	1.001	1.028	1.145
1.056	1.092	0.146	0.923	0.996	0.965	1.120	1.111
1.023	1.021	1.093	1.097	1.034	1.118	1.026	1.077
0.963	1.036	1.061	1.107	1.142	<mark>1.121</mark>	1.080	0.998

1.062	1.091	1.108	1.101	1.064	1.040	0.977
1.001	1.071	1.100	1.067	1.082	1.022	1.041
1.069	1.004	0.883	0.873	0.150	1.096	1.077
1.095	0.874	0.157	0	0.919	1.095	1.112
1.067	0.869	0	0.982	0.997	1.020	1.122
1.098	0.149	0.919	1.001	0.952	1.105	1.104
1.023	1.097	1.092	1.021	1.111	1.019	1.069
1.048	1.076	1.105	1.125	1.106	1.067	0.992
	1.062 1.001 1.069 1.095 1.067 1.098 1.023 1.048	1.062 1.091 1.001 1.071 1.069 1.004 1.095 0.874 1.067 0.869 1.098 0.149 1.023 1.097 1.048 1.076	1.062 1.091 1.108 1.001 1.071 1.100 1.069 1.004 0.883 1.095 0.874 0.157 1.067 0.869 0 1.087 0.149 0.919 1.023 1.097 1.092 1.048 1.076 1.105	1.0621.0911.1081.1011.0011.0711.1001.0671.0691.0040.8830.8731.0950.8740.15701.0670.86900.9821.0980.1490.9191.0011.0231.0971.0921.0211.0481.0761.1051.125	1.0621.0911.1081.1011.0641.0011.0711.1001.0671.0821.0691.0040.8830.8730.1501.0950.8740.15700.9191.0670.86900.9820.9971.0980.1490.9191.0010.9521.0231.0971.0921.0211.1111.0481.0761.1051.1251.106	1.0621.0911.1081.1011.0641.0401.0011.0711.1001.0671.0821.0221.0691.0040.8830.8730.1501.0961.0950.8740.15700.9191.0951.0670.86900.9820.9971.0201.0980.1490.9191.0010.9521.1051.0231.0971.0921.0211.1111.0191.0481.0761.1051.1251.1061.067

AZTRAN							
1.197	1.121	1.171	1.196	1.176	1.125	1.077	1.161
1.121	0.914	0.984	1.001	0.945	0.945	0.915	1.084
1.171	0.984	0.914	0.8	0.776	0.14	0.962	1.145
1.196	1.001	0.8	0.148	0	0.846	0.993	1.212
1.176	0.945	0.776	0	0.919	0.953	0.97	1.247
1.125	0.945	0.14	0.846	0.953	0.931	1.054	1.221
1.077	0.915	0.962	0.993	0.97	1.054	0.962	1.167
1.161	1.084	1.145	1.212	1.247	1.221	1.167	1.242

El siguiente modelo a simular consistió en "alargar" el modelo anterior, de modo que se tuviera un ensamble de combustible de 381 [cm] de altura y axialmente homogeneo. La Figura 4 muestra la geometría utilizada:

Figura 4. Esquema del modelo de ensamble homogéneo.

Después se simuló el mismo ensamble, pero esta vez cambiando su composición axial, la Figura 5 muestra el esquema de este caso.

Figura 5. Esquema del modelo de ensamble heterogéneo.

En la Tabla V se muestran los resultados obtenidos del factor infinito de multiplicación de neutrones con AZTRAN, obtenidos con los métodos de aproximación de ordenadas discretas S_2 y S_4 , y su comparación con SERPENT, así como su porcentaje de error relativo.

	SERPENT		AZT	RAN	
Método		S 2	%EE	S4	%EE
Ensamble homogeneo	1.11991	1.0824	3.3	1.0907	2.6
Ensamble heterogeneo	1.09758	1.0223	6.9	1.0545	3.9
$\% EE = \left \frac{k_{inf_{SERPENT}} - k_{inf}}{k_{inf_{SERPENT}}} \right * 100$)				

|--|

Por último se simuló el núcleo completo, con 3 tipos de ensamble y éstos a su vez con 6 tipos diferentes de celda. Las Figuras 6 y 7 muestran la distribución y descripción del modelo.

				1A224	1A205	1A249	1A250	1A237	1A262	1A213	1A228	1A208	1A209	1A231	1A210	1A266	1A268				
			1A253	1C453	1C459	1C505	1C509	1C484	1C486	1C420	1C436	1C543	1C529	1C532	1C533	1C425	1C432	1A251			
		1A232	1C418	1C563	1C378	1C524	1C603	1C423	1C521	1C589	1C594	1C445	1C393	1C430	1C534	1C421	1C419	1C559	1A234		
	1A259	1C498	1C460	1C377	1C557	1C602	1C470	1C476	1C406	1C575	1C527	1C370	1C417	1C561	1C457	1C441	1C443	1C555	1C497	1A255	
1A269	1C472	1C515	1C519	1C547	1C544	1C576	1C552	1C536	1C560	1C376	1C595	1C645	1C646	1C626	1C609	1C639	1C643	1C642	1C628	1C496	1A245
1A271	1C478	1C513	1C518	1C435	1B343	1C541	1B282	1C558	1B276	1B341	1B329	1B340	1C554	1B306	1C611	1B279	1C621	1C604	1C647	1C494	1A272
1A236	1C431	1C488	1C553	1C624	1C633	1B299	1C600	1B339	1C648	1B321	1B314	1C538	1B309	1C638	1B298	1C566	1C546	1C372	1C579	1C487	1A225
1A215	1C446	1C545	1C539	1C637	1B330	1C537	1B295	1C399	1B331	1B335	1B324	1B313	1C614	1B328	1C635	1B274	1C599	1C569	1C493	1C433	1A211
1A216	1C514	1C395	1C426	1C598	1C570	1B308	1C379	1B354	1C499	1B344	1B323	1C607	1B302	1C610	1B312	1C580	1C564	1C615	1C606	1C510	1A246
1A229	1C516	1C449	1C392	1C593	1B318	1C630	1B307	1C627	1B345	1B315	1B283	1B297	1C631	1B310	1C574	1B311	1C583	1C605	1C620	1C506	1A261
1A219	1C386	1C480	1C571	1C623	1B316	1B353	1B290	1B355	1B352	1B359	1B273	1B346	1B366	1B301	1B342	1B275	1C456	1C490	1C502	1C523	1A233
1A221	1C391	1C591	1C407	1C412	1B320	1B292	1B348	1B351	1B327	1B358	1B365	1B364	1B349	1B304	1B277	1B284	1C422	1C501	1C512	1C520	1A263
1A218	1C500	1C452	1C424	1C374	1B334	1C622	1B326	1C517	1B325	1B367	1B347	1B350	1C613	1B333	1C585	1B317	1C590	1C375	1C551	1C383	1A238
1A230	1C508	1C438	1C416	1C495	1C540	1B280	1C369	1B300	1C562	1B361	1B360	1C522	1B368	1C587	1B289	1C567	1C573	1C530	1C565	1C382	1A214
1A241	1C409	1C489	1C507	1C466	1B287	1C371	1B356	1C617	1B291	1B293	1B357	1B281	1C597	1B322	1C584	1B338	1C442	1C389	1C473	1C550	1A260
1A244	1C411	1C511	1C474	1C568	1C549	1B363	1C535	1B296	1C596	1B362	1B294	1C528	1B288	1C450	1B286	1C455	1C444	1C469	1C396	1C548	1A257
1A226	1C440	1C644	1C380	1C577	1B303	1C434	1B319	1C491	1B285	1B337	1B336	1B278	1C403	1B305	1C582	1B332	1C618	1C414	1C404	1C461	1A270
1A223	1C477	1C381	1C636	1C616	1C572	1C588	1C581	1C601	1C578	1C526	1C629	1C467	1C373	1C586	1C592	1C612	1C608	1C405	1C384	1C447	1A212
	1A242	1C492	1C465	1C398	1C413	1C400	1C454	1C385	1C387	1C390	1C448	1C619	1C481	1C531	1C525	1C640	1C632	1C463	1C462	1A252	
		1A258	1C410	1C408	1C388	1C429	1C451	1C397	1C402	1C464	1C428	1C485	1C625	1C542	1C556	1C634	1C641	1C458	1A240		
			1A256	1C475	1C439	1C471	1C468	1C437	1C415	1C482	1C394	1C504	1C503	1C483	1C479	1C427	1C401	1A254			
				1A267	1A265	1A235	1A264	1A227	1A217	1A206	1A220	1A207	1A247	1A243	1A239	1A222	1A248				
						-						_			_				_		

Figura 6. Distribución de ensambles para el modelo de núcleo completo.

		Tipo			
Nodo	1A	1B	1C	Altura [in]	Altura [cm]
25		1	1	150	381
24		2	5	144	365.76
23				138	350.52
22				132	335.28
21				126	320.04
20				120	304.8
19				114	289.56
18				108	274.32
17	1	3	6	102	259.08
16				96	243.84
15				90	228.6
14				84	213.36
13				78	198.12
12				72	182.88
11				66	167.64
10				60	152.4
9				54	137.16
8		4	7	48	121.92
7				42	106.68
6				36	91.44
5				30	76.2
4		3	6	24	60.96
3				18	45.72
2		2	5	12	30.48
1		1	1	6	15.24
0				0	0

Figura 7. Descripción de los ensambles utilizados para el modelo de núcleo completo.

Igual que en los modelos anteriores se calculó el factor de multiplicación de neutrones, pero en este caso efectivo, la Tabla VI muestra los valores obtenidos, así como el porcentaje de error de éstos con respecto al obtenido con SIMULATE-3.

					r
	SIMULATE-3	SERPENT	AZTRAN	AZKIND 1.0	AZKIND 1.1
k _{eff}	1.0879	1.09472	1.10428	1.09281	1.08013
%EE	0	0.63	1.051	0.45	0.71
	kinf summare a-kinf				

Tabla VI. Valores de k_{eff} para el modelo de núcleo completo.

 $\% EE = \left| \frac{k_{inf_{SIMULATE-3}}}{k_{inf_{SIMULATE-3}}} \right| * 100$

Por último se obtuvieron las distribuciones de potencia radial para el modelo de núcleo completo con SIMULATE-3 y AZKIND, las Figuras 8 y 9 muestran los resultados.

SIMULATE-3

				0.068	0.096	0.117	0.131	0.141	0.147	0.15	0.15	0.147	0.141	0.131	0.117	0.096	0.068				
			0.101	0.27	0.364	0.433	0.484	0.518	0.54	0.551	0.551	0.54	0.518	0.484	0.433	0.364	0.27	0.101			
		0.11	0.326	0.482	0.615	0.718	0.794	0.847	0.881	0.897	0.897	0.881	0.847	0.794	0.718	0.615	0.482	0.326	0.11		
	0.101	0.326	0.518	0.702	0.857	0.981	1.076	1.142	1.182	1.201	1.201	1.182	1.142	1.076	0.981	0.857	0.702	0.518	0.326	0.101	
0.068	0.27	0.482	0.702	0.901	1.07	1.204	1.31	1.379	1.423	1.441	1.441	1.423	1.379	1.31	1.204	1.07	0.901	0.702	0.482	0.27	0.068
0.096	0.364	0.615	0.857	1.07	1.191	1.383	1.427	1.562	1.534	1.55	1.55	1.534	1.562	1.427	1.383	1.191	1.07	0.857	0.615	0.364	0.096
0.117	0.433	0.718	0.981	1.204	1.383	1.46	1.633	1.633	1.74	1.682	1.682	1.74	1.633	1.633	1.46	1.383	1.204	0.981	0.718	0.433	0.117
0.131	0.484	0.794	1.076	1.31	1.427	1.633	1.667	1.811	1.768	1.782	1.782	1.768	1.811	1.667	1.633	1.427	1.31	1.076	0.794	0.484	0.131
0.141	0.518	0.847	1.142	1.379	1.562	1.633	1.811	1.803	1.913	1.85	1.85	1.913	1.803	1.811	1.633	1.562	1.379	1.142	0.847	0.518	0.141
0.147	0.54	0.881	1.182	1.423	1.534	1.74	1.768	1.913	1.87	1.885	1.885	1.87	1.913	1.768	1.74	1.534	1.423	1.182	0.881	0.54	0.147
0.15	0.551	0.897	1.201	1.441	1.55	1.682	1.782	1.85	1.885	1.898	1.898	1.885	1.85	1.782	1.682	1.55	1.441	1.201	0.897	0.551	0.15
0.15	0.551	0.897	1.201	1.441	1.55	1.682	1.782	1.85	1.885	1.898	1.898	1.885	1.85	1.782	1.682	1.55	1.441	1.201	0.897	0.551	0.15
0.147	0.54	0.881	1.182	1.423	1.534	1.74	1.768	1.913	1.87	1.885	1.885	1.87	1.913	1.768	1.74	1.534	1.423	1.182	0.881	0.54	0.147
0.141	0.518	0.847	1.142	1.379	1.562	1.633	1.811	1.803	1.913	1.85	1.85	1.913	1.803	1.811	1.633	1.562	1.379	1.142	0.847	0.518	0.141
0.131	0.484	0.794	1.076	1.31	1.427	1.633	1.667	1.811	1.768	1.782	1.782	1.768	1.811	1.667	1.633	1.427	1.31	1.076	0.794	0.484	0.131
0.117	0.433	0.718	0.981	1.204	1.383	1.46	1.633	1.633	1.74	1.682	1.682	1.74	1.633	1.633	1.46	1.383	1.204	0.981	0.718	0.433	0.117
0.096	0.364	0.615	0.857	1.07	1.191	1.383	1.427	1.562	1.534	1.55	1.55	1.534	1.562	1.427	1.383	1.191	1.07	0.857	0.615	0.364	0.096
0.068	0.27	0.482	0.702	0.901	1.07	1.204	1.31	1.379	1.423	1.441	1.441	1.423	1.379	1.31	1.204	1.07	0.901	0.702	0.482	0.27	0.068
	0.101	0.326	0.518	0.702	0.857	0.981	1.076	1.142	1.182	1.201	1.201	1.182	1.142	1.076	0.981	0.857	0.702	0.518	0.326	0.101	
		0.11	0.326	0.482	0.615	0.718	0.794	0.847	0.881	0.897	0.897	0.881	0.847	0.794	0.718	0.615	0.482	0.326	0.11		
			0.101	0.27	0.364	0.433	0.484	0.518	0.54	0.551	0.551	0.54	0.518	0.484	0.433	0.364	0.27	0.101			
				0.068	0.096	0.117	0.131	0.141	0.147	0.15	0.15	0.147	0.141	0.131	0.117	0.096	0.068				

Figura 8. Distribución de potencia axial para el modelo de núcleo completo obtenido con SIMULATE-3.

AZKIND 1.1

				0.078	0.105	0.127	0.142	0.153	0.159	0.162	0.162	0.159	0.153	0.142	0.127	0.105	0.078				
			0.109	0.305	0.400	0.473	0.526	0.562	0.584	0.595	0.595	0.584	0.562	0.526	0.473	0.400	0.305	0.109			
		0.119	0.364	0.514	0.648	0.751	0.827	0.880	0.913	0.928	0.928	0.913	0.880	0.827	0.751	0.648	0.514	0.364	0.119		
	0.109	0.364	0.551	0.733	0.887	1.010	1.102	1.165	1.203	1.220	1.220	1.203	1.165	1.102	1.010	0.887	0.733	0.551	0.364	0.109	
0.078	0.305	0.514	0.733	0.929	1.098	1.226	1.329	1.391	1.432	1.448	1.448	1.432	1.391	1.329	1.226	1.098	0.929	0.733	0.514	0.305	0.078
0.105	0.400	0.648	0.887	1.098	1.172	1.410	1.387	1.575	1.482	1.502	1.502	1.482	1.575	1.387	1.410	1.172	1.098	0.887	0.648	0.400	0.105
0.127	0.473	0.751	1.010	1.226	1.410	1.416	1.644	1.562	1.734	1.610	1.610	1.734	1.562	1.644	1.416	1.410	1.226	1.010	0.751	0.473	0.127
0.142	0.526	0.827	1.102	1.329	1.387	1.644	1.592	1.797	1.674	1.694	1.694	1.674	1.797	1.592	1.644	1.387	1.329	1.102	0.827	0.526	0.142
0.153	0.562	0.880	1.165	1.391	1.575	1.562	1.797	1.697	1.875	1.738	1.738	1.875	1.697	1.797	1.562	1.575	1.391	1.165	0.880	0.562	0.153
0.159	0.584	0.913	1.203	1.432	1.482	1.734	1.674	1.875	1.752	1.768	1.768	1.752	1.875	1.674	1.734	1.482	1.432	1.203	0.913	0.584	0.159
0.162	0.595	0.928	1.220	1.448	1.502	1.610	1.694	1.738	1.768	1.776	1.776	1.768	1.738	1.694	1.610	1.502	1.448	1.220	0.928	0.595	0.162
0.162	0.595	0.928	1.220	1.448	1.502	1.610	1.694	1.738	1.768	1.776	1.776	1.768	1.738	1.694	1.610	1.502	1.448	1.220	0.928	0.595	0.162
0.159	0.584	0.913	1.203	1.432	1.482	1.734	1.674	1.875	1.752	1.768	1.768	1.752	1.875	1.674	1.734	1.482	1.432	1.203	0.913	0.584	0.159
0.153	0.562	0.880	1.165	1.391	1.575	1.562	1.797	1.697	1.875	1.738	1.738	1.875	1.697	1.797	1.562	1.575	1.391	1.165	0.880	0.562	0.153
0.142	0.526	0.827	1.102	1.329	1.387	1.644	1.592	1.797	1.674	1.694	1.694	1.674	1.797	1.592	1.644	1.387	1.329	1.102	0.827	0.526	0.142
0.127	0.473	0.751	1.010	1.226	1.410	1.416	1.644	1.562	1.734	1.610	1.610	1.734	1.562	1.644	1.416	1.410	1.226	1.010	0.751	0.473	0.127
0.105	0.400	0.648	0.887	1.098	1.172	1.410	1.387	1.575	1.482	1.502	1.502	1.482	1.575	1.387	1.410	1.172	1.098	0.887	0.648	0.400	0.105
0.078	0.305	0.514	0.733	0.929	1.098	1.226	1.329	1.391	1.432	1.448	1.448	1.432	1.391	1.329	1.226	1.098	0.929	0.733	0.514	0.305	0.078
	0.109	0.364	0.551	0.733	0.887	1.010	1.102	1.165	1.203	1.220	1.220	1.203	1.165	1.102	1.010	0.887	0.733	0.551	0.364	0.109	
		0.119	0.364	0.514	0.648	0.751	0.827	0.880	0.913	0.928	0.928	0.913	0.880	0.827	0.751	0.648	0.514	0.364	0.119		
			0.109	0.305	0.400	0.473	0.526	0.562	0.584	0.595	0.595	0.584	0.562	0.526	0.473	0.400	0.305	0.109			
				0.078	0.105	0.127	0.142	0.153	0.159	0.162	0.162	0.159	0.153	0.142	0.127	0.105	0.078		-		

Figura 9. Distribución de potencia axial para el modelo de núcleo completo obtenido con AZKIND 1.1.

Se puede apreciar que, aunque existen diferencias en los valores al comparar los resultados con ambos códigos, los valores pico se encuentran en la misma ubicación y los resultados obtenidos con AZKIND presentan una simetría adecuada conforme al modelo simulado. La Figura 10 presenta las diferencias relativas entre los resultados de ambos códigos.

XXVII Congreso Anual de la Sociedad Nuclear Mexicana XV Congreso Nacional de la Sociedad Mexicana de Seguridad Radiológica Villahermosa, Tabasco, del 3 al 6 de julio de 2016

				-14.12	-9.69	-8.63	-8.63	-8.30	-8.30	-8.20	-8.20	-8.30	-8.30	-8.63	-8.63	-9.69	-14.12				
			-7.525	-12.81	-9.97	-9.26	-8.60	-8.44	-8.19	-7.99	-7.99	-8.19	-8.44	-8.60	-9.26	-9.97	-12.81	-7.52			
		-7.73	-11.56	-6.70	-5.35	-4.64	-4.19	-3.88	-3.58	-3.44	-3.44	-3.58	-3.88	-4.19	-4.64	-5.35	-6.70	-11.56	-7.73		
	-7.52	-11.56	-6.33	-4.36	-3.55	-2.94	-2.40	-1.97	-1.75	-1.57	-1.57	-1.75	-1.97	-2.40	-2.94	-3.55	-4.36	-6.33	-11.56	-7.52	
-14.12	-12.81	-6.70	-4.36	-3.13	-2.63	-1.82	-1.44	-0.84	-0.65	-0.46	-0.46	-0.65	-0.84	-1.44	-1.82	-2.63	-3.13	-4.36	-6.70	-12.81	-14.12
-9.69	-9.97	-5.35	-3.55	-2.63	1.60	-1.95	2.80	-0.85	3.38	3.10	3.10	3.38	-0.85	2.80	-1.95	1.60	-2.63	-3.55	-5.35	-9.97	-9.69
-8.63	-9.26	-4.64	-2.94	-1.82	-1.95	2.99	-0.69	4.32	0.35	4.30	4.30	0.35	4.32	-0.69	2.99	-1.95	-1.82	-2.94	-4.64	-9.26	-8.63
-8.63	-8.60	-4.19	-2.40	-1.44	2.80	-0.69	4.49	0.80	5.35	4.94	4.94	5.35	0.80	4.49	-0.69	2.80	-1.44	-2.40	-4.19	-8.60	-8.63
-8.30	-8.44	-3.88	-1.97	-0.84	-0.85	4.32	0.80	5.91	1.98	6.05	6.05	1.98	5.91	0.80	4.32	-0.85	-0.84	-1.97	-3.88	-8.44	-8.30
-8.30	-8.19	-3.58	-1.75	-0.65	3.38	0.35	5.35	1.98	6.33	6.19	6.19	6.33	1.98	5.35	0.35	3.38	-0.65	-1.75	-3.58	-8.19	-8.30
-8.20	-7.99	-3.44	-1.57	-0.46	3.10	4.30	4.94	6.05	6.19	6.42	6.42	6.19	6.05	4.94	4.30	3.10	-0.46	-1.57	-3.44	-7.99	-8.20
-8.20	-7.99	-3.44	-1.57	-0.46	3.10	4.30	4.94	6.05	6.19	6.42	6.42	6.19	6.05	4.94	4.30	3.10	-0.46	-1.57	-3.44	-7.99	-8.20
-8.30	-8.19	-3.58	-1.75	-0.65	3.38	0.35	5.35	1.98	6.33	6.19	6.19	6.33	1.98	5.35	0.35	3.38	-0.65	-1.75	-3.58	-8.19	-8.30
-8.30	-8.44	-3.88	-1.97	-0.84	-0.85	4.32	0.80	5.91	1.98	6.05	6.05	1.98	5.91	0.80	4.32	-0.85	-0.84	-1.97	-3.88	-8.44	-8.30
-8.63	-8.60	-4.19	-2.40	-1.44	2.80	-0.69	4.49	0.80	5.35	4.94	4.94	5.35	0.80	4.49	-0.69	2.80	-1.44	-2.40	-4.19	-8.60	-8.63
-8.63	-9.26	-4.64	-2.94	-1.82	-1.95	2.99	-0.69	4.32	0.35	4.30	4.30	0.35	4.32	-0.69	2.99	-1.95	-1.82	-2.94	-4.64	-9.26	-8.63
-9.69	-9.97	-5.35	-3.55	-2.63	1.60	-1.95	2.80	-0.85	3.38	3.10	3.10	3.38	-0.85	2.80	-1.95	1.60	-2.63	-3.55	-5.35	-9.97	-9.69
-14.12	-12.81	-6.70	-4.36	-3.13	-2.63	-1.82	-1.44	-0.84	-0.65	-0.46	-0.46	-0.65	-0.84	-1.44	-1.82	-2.63	-3.13	-4.36	-6.70	-12.81	-14.12
	-7.52	-11.56	-6.33	-4.36	-3.55	-2.94	-2.40	-1.97	-1.75	-1.57	-1.57	-1.75	-1.97	-2.40	-2.94	-3.55	-4.36	-6.33	-11.56	-7.52	
		-7.73	-11.56	-6.70	-5.35	-4.64	-4.19	-3.88	-3.58	-3.44	-3.44	-3.58	-3.88	-4.19	-4.64	-5.35	-6.70	-11.56	-7.73		
			-7.52	-12.81	-9.97	-9.26	-8.60	-8.44	-8.19	-7.99	-7.99	-8.19	-8.44	-8.60	-9.26	-9.97	-12.81	-7.52			
				-14.12	-9.69	-8.63	-8.63	-8.30	-8.30	-8.20	-8.20	-8.30	-8.30	-8.63	-8.63	-9.69	-14.12				

Figura 10. Porcentajes de error entre las distribuciones de potencia SIMULATE-3 y AZKIND. Promedio = -3.36%, desviación estándar = 1.32.

En general, los errores por ensamble están por debajo del 7%, con excepción de los que se encuentran hacia la periferia del núcleo, y en particular hacia las esquinas, en donde se ponen de manifiesto varias limitaciones de la aproximación de difusión, como son poder representar adecuadamente el flujo neutrónico en la frontera del núcleo, en donde se presenta un gradiente de flujo importante, una alta anisotropía debida principalmente a las dispersiones del agua que actúa como reflector, y, probablemente, una estimación incorrecta de las condiciones de frontera por parte de AZKIND, y especialmente en las esquinas.

4. CONCLUSIONES

Tomando en cuenta que aún están en desarrollo y que los valores reportados fueron calculados con ordenadas discretas S_2 y S_4 , los resultados presentados en este trabajo muestran un buen comportamiento de los códigos AZTRAN y AZKIND, debido a que los resultados obtenidos en los cálculos de criticidad de los diferentes modelos, así como el comportamiento la distribución de potencia, integrados con diferentes composiciones en el combustible, fueron comparables con los resultados obtenidos y/o reportados con otros códigos.

Se puede comprobar que las soluciones numéricas utilizadas por AZTRAN y AZKIND están bien implementadas al tener valores bajos en las diferencias de resultados obtenidos con respecto al código SERPENT, lo cual también verifica la confiabilidad de éste para la generación de secciones eficaces y que los diferentes modelos fueron correctamente simulados.

AGRADECIMIENTOS

Los autores agradecen el apoyo financiero recibido del proyecto estratégico No. 212602 (AZTLAN Platform) del Fondo Sectorial de Sustentabilidad Energética CONACYT - SENER.

REFERENCIAS

- 1. "AZTLAN Platform", <u>www.aztlanplatform.mx</u> (2016).
- 2. Armando M. Gómez Torres et al, "*AZTLAN Platform*: Plataforma Mexicana para el Análisis y Diseño de Reactores Nucleares", *XXV Congreso Anual de la Sociedad Nuclear Mexicana* Boca del Río, Veracruz, México, 2014
- 3. AZTRAN 1.0, AZTLAN TRANSPORT NEUTRONIC CODE, Manual de usuario, 2015.
- 4. AZKIND 1.0, AZTLAN KINETICS IN NEUTRON DIFFUSION, Manual de usuario, 2015.
- 5. Dave Knott, Bengt H. Forssén, Malte Edenius. CASMO-4 A Fuel Assembly Burnup Program Methodology, STUDSVIK/SOA-95/2. Rev. 0, (Sept 1995).
- 6. R. J. J. Stammler, HELIOS Methods, Studsvik Scandpower, (2002).
- MCNP A General Monte Carlo N-Particle Transport Code, Version 5. X-5 Monte Carlo Team. Los Alamos National Laboratory. (2003).
- 8. "SERPENT, a Continuous-energy Monte Carlo Reactor Physics _Burnup Calculation Code", <u>http:// montecarlo.vtt.fi</u> (2016).
- 9. SIMULATE-3, Advanced Three-Dimensional Two-Group Reactor Analysis Code, STUDSVIK/SOA-95/18.