
Annals of Nuclear Energy 99 (2017) 174–182
Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier .com/locate /anucene
HPC implementation in the time-dependent neutron diffusion code
AZKIND
http://dx.doi.org/10.1016/j.anucene.2016.08.019
0306-4549/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: armagotoro@hotmail.com, armando.gomez@inin.gob.mx

(A.M. Gómez Torres).
1 On sabbatical leave at the Instituto Nacional de Investigaciones Nucleares.
Andrés Rodríguez Hernández a, Armando Miguel Gómez Torres a,⇑, Edmundo del Valle Gallegos b,1

a Instituto Nacional de Investigaciones Nucleares, Carr. Mexico-Toluca s/n, La Marquesa, C.P. 52750 Ocoyoacac, Edo. de México, Mexico
b Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, San Pedro Zacatenco, C.P. 07738 Cd. de México, Mexico

a r t i c l e i n f o a b s t r a c t
Article history:
Received 30 June 2016
Accepted 25 August 2016
Available online 7 September 2016

Keywords:
HPC, high performance computing
NFEM, nodal finite element method
Parallel computing
GPU, Graphics Processing Unit
Neutron diffusion theory
This article presents a summary of the development of the computer code AZKIND. This code is based on
multi-group neutron diffusion theory, where the kinetics equations include delayed neutron precursors.
For space discretization a Galerkin process is applied using a nodal finite elements method, and the well-
known h-method is used for time discretization. A high performance computing methodology was imple-
mented in AZKIND to solve the resulting linear algebraic system A~v ¼~bwhere numerical solution of large
algebraic systems representing full nuclear reactor cores is achieved with an acceleration technique
based on the open source linear algebra PARALUTION library. This implementation allows AZKIND
threading into a GPU thousands of arithmetic operations for parallel processing. The acceleration is
demonstrated with the use of different nuclear fuel arrays resulting in extremely large matrices, getting
a speedup ratio up to 48. Finally, the acceleration capabilities of the HPC implementation are presented in
the simulation of a power transient in an actual boiling water reactor core.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Parallel computing is the computer science discipline that deals
with the system architecture and software issues related to the
concurrent execution of applications. The interest in parallel com-
puting dates back to the late 1950s, with advancements surfacing
in the form of supercomputers throughout the 60s and 70s. Start-
ing in the late 80s, clusters competed and eventually displaced
multiple parallel processors (MPP) for many applications. Today,
clusters are the workhorse of scientific computing and are the
dominant architecture in data centers. Parallel computing has
become a mainstream based on multi-core processors.

In the particular case of the nuclear industry, since the late 50’s,
the need to perform nuclear safety analyses was essential, mainly
for commercial nuclear power plants. In this sense, the application
of scientific computing calculations has made possible these safety
analyses, but always struggling with computer capabilities. In the
former efforts, the main goal was to get a static or dynamic solu-
tion to a set of partial differential equations for neutron diffusion
and neutron transport with technology and methods present in
those years. For this huge task, numerical techniques were used
with finite differences, finite elements, and nowadays, nodal finite
elements. No matter which numerical method is used, the analyst
always faces the problem of solving an extremely large algebraic
system that challenges computer capabilities. It is desirable for
the nuclear safety analyst to obtain the results of each reactor sim-
ulation in a relatively short time.

In the last few years, the technological developments of super-
computers or high performance computer equipment have made
possible the use of supercomputing in many scientific areas,
including nuclear applications. A proper combination of parallel
computing software, like already developed linear algebra
libraries, and a specific project can result in a computational plat-
form to simulate nuclear reactor states in relatively quick times.

This paper is organized as follows, Section 2 summarizes the
use of a nodal finite element method applied to a set of coupled
partial differential equations to generate algebraic systems to be
solved for nuclear reactors. Section 3 describes the characteristics
of the algebraic system and matrix structure. The implementation
of high performance computing is presented in Section 4 with the
use of the PARALUTION library in the neutron kinetics code
AZKIND. A verification of the modern version of AZKIND for reactor
steady state calculations with serial processing is contained in Sec-
tion 5. Section 6 describes the construction of different sizes of
matrices, from small up to extremely large matrices, with some
verification tests for parallel versus serial computing. A demonstra-
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tion of the acceleration of computer calculations is shown in Sec-
tion 7 with the use of different hardware capabilities, followed
by the simulation of a reactor power transient. Finally, conclusions
and an outlook of coming efforts are presented in Section 8.

2. Neutron diffusion theory and nodal methods

2.1. Multigroup time-dependent neutron diffusion equations

The development presented in this section is based on multi-
group neutron diffusion theory. For G neutron energy groups and
Ip delayed neutron precursor concentrations, the neutron diffusion
kinetics equations are given by Eqs. (1) and (2) (Duderstadt and
Hamilton, 1976):
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In addition to boundary conditions for neutron fluxes, initial

conditions must be satisfied by neutron fluxes and neutron precur-
sors functions. The parameters involved in the above equations are
described in Duderstadt and Hamilton (1976).

2.2. Spatial discretization

The spatial discretization of these equations is strongly con-
nected with the discretization of a nuclear reactor core of volume
X. Representing the neutron flux and the precursor concentrations
in terms of base functions defined over X, it is possible to write:
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where Nf and Np are the number of unknowns to be determined for
neutron flux and delayed neutron precursors, respectively. Substi-
tuting expressions (3), (4) into (1), (2), and applying the Galerkin
process for spatial discretization, as described in Rodríguez-Hernán
dez (2002), the resulting algebraic system of equations can be
expressed in matrix notation as follows,
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Section 2.3 explains the computation of the matrix elements
with the use of nodal base functions for the method RTN-0 to eval-
uate the integral expressions in Table 1 over each node Xh in the
full domain X. See Fig. 1.

2.3. Nodal finite element method in spatial discretization

A particular nodal finite element (NFE) is characterized by the
fact that for each cell (node) the function unknowns to be deter-
mined are the ð00Þ Legendre moment (average) of the unknown
function over each face of the node and the ð000Þ Legendre
moment over the cell volume.

Fig. 1a shows a physical domain X represented graphically after
generating an xyz mesh. Fig. 1b shows a cuboid-type cell with
directions through the faces: (x) Right, Left; (y) Near, Far; (z) Top,
Bottom; and C for the average of the function over the cell volume.

Taking into consideration the general form to build up nodal
schemes (Hennart, 1986), the moments of a function (at edges
and cell) over a node like the one shown in Fig. 1b can be written
for the nodal finite element method RTN-0 (Raviart-Thomas-
Nédélec).

In the NFE method RTN-0, the normalized zero order Legendre
polynomials, defined over the unit cell
Xijk ¼ ½�1;1� � ½�1;1� � ½�1;1� and correlated to each physical cell
Xh ¼ Xijk ¼ ½xi; xiþ1� � ½yj; yjþ1� � ½zk; zkþ1�, are used to calculate the
elements of the matrices in Eqs. (5) and (6). The matrix elements
are quantified introducing the following nodal base functions
(Hennart, 1986):
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where Plpqðx; y; zÞ ¼ PlðxÞPpðyÞPqðzÞ; l; p; q ¼ 0;1;2.
An extensive discussion on nodal diffusion methods can be

found in reference (Grossman and Hennart, 2007) for space dis-
cretization using simplification approaches for calculating the
moments over a node.

2.4. Discretization of the time variable

Once the spatial discretization is done, the h-method (Rodrí
guez-Hernández, 2002) is applied for the discretization of the time
variable appearing in the algebraic system given by (5) and (6). For
the time integration over the interval ð0; T�, this interval is divided
in L time-steps Dtl ¼ ½tl; tlþ1� and the following approach is
assumed:
Z tlþ1

tl

f ðtÞdt ffi hl hf lþ1 þ ð1� hÞf l
� � ð7Þ

where hl ¼ Dtl; f l ¼ f ðtlÞ; f lþ1 ¼ f ðtlþ1Þ, and h is the integration
parameter.



Table 1
Matrix elements from the spatial discretization.

Matrix Type Dimension Elements
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(a) Domain Ω (b) Physical local node Ωh

Fig. 1. Discretization of domain X.
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In this way, when carrying out the time integration, both
parameters hf and hp for neutron flux and delayed neutron precur-
sors are considered. Depending on the values assigned, in the inter-
val ½0;1�, to the theta parameters hf and hp, different time
integration schemes are generated (Rodríguez-Hernández, 2002),
but they are not discussed here.

Applying the cited time integration method, the following set of
equations are produced,
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Eqs. (8) and (9) can be expressed as an algebraic system if the
flux and precursors vectors, and the corresponding right-hand-
side terms, are ordered as follows,
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The dimension of matrix B is ½NfGþ NpIp� � ½NfGþ NpIp� since the
solution vector W would give the neutron fluxes for the Nf domain’s
points for each group g, and the delayed neutron precursor concen-
trations for the Np points for each i precursor group.

In order to reduce the algebraic system, a simplification is done

by solving vector Cjþ1
i from Eq. (9) and inserting it into Eq. (8),

yielding the following expression:
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The Eq. (10) can also be expressed as an algebraic system as fol-
lows, where the matrix dimension is now ½NfG� � ½NfG�:
Ajþ1Ujþ1 ¼ Qj; j ¼ 0;1;2; . . . ; ð11Þ
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Therefore, for a given vector Uj the algebraic system (11) is
solved to obtain the neutron fluxesUjþ1. Hence, the general process
requires for the first time-step an initial flux vector which is used
in (11) to determine the new neutron fluxes at the end of the time
step, thus using these new ones to calculate the new delayed neu-
tron precursor concentrations vector. This process is carried out for
each time step over the total time interval (0,T].

3. AZKIND algebraic system

As result from the application of the NFE method RTN-0 and the
use of the h-method approach, the corresponding algebraic system

is represented as a matrix–vector multiplication A~v ¼~b, where A

and ~b are known and the unknown vector ~v is computed for each
time step Dtl.

The square matrix A is non-symmetric and it is comprised of G2

matricial blocks for G neutron energy groups. Each block is com-
posed by a tridiagonal set of elements and a set of sparse elements.
Sparse elements correspond to the numerical coupling between
the average nodal flux with each of the neutron fluxes at the edges
of the node. Each block is built up with matrix elements corre-
sponding to the directions x; y; z, and c.

The algebraic system to be solved in AZKIND is a difficult prob-
lem when it is required to compute the solution for real nuclear
reactor cores for a considerable number of G neutron energy
groups. It is difficult in the sense that the non-symmetric matrix
A becomes a very large matrix which changes for each time step.
The matrix generated by AZKIND has only nnz non-zero elements
(see Section 6.1).

Searching for an iterative algorithm for non-symmetric linear
systems, the method bi-conjugate gradient stabilized (BiCGStab)
(Van der Vorst , 1992) was used because it is demonstrated to be
an efficient and fast converging method for Krylov subspaces.

4. The AZKIND code and parallel computing

4.1. AZKIND background

The computer code AZtlan KInetics in Neutron Diffusion AZKIND,
is part of the neutronic codes selected for implementation in the
AZTLAN Platform (Gómez-Torres et al., 2015). The original devel-
opment NRKin3D was a master degree project (Rodríguez-Hernán
dez, 2002) written in FORTRAN 77. The first task in converting this
academic code to a real reactor simulator code was to migrate to
FORTRAN 90/95, mainly for the dynamic management of memory
allocations. The next step was the implementation of algorithms
for parallel processing to generate results in short acceptable
times. AZKIND is comprised of the computer subprograms PRTN0
(Salas-Cuevas, 1995) and NRKin3D which calculate the nuclear
reactor steady state and the nuclear reactor kinetics, respectively.

4.2. Parallel computing library

PARALUTION (Lukarski, 2014) is an open source C++ library to
solve sparse systems of linear equations with parallel processing.
It offers a variety of iterative solvers such as the CG, BiCGStab
and GMRES Krylov methods, and preconditioners based on additive
(Jacobi, Gauss–Seidel) and multiplicative (ILUp, ILUT, power(q)-
pattern enhanced multi-colored ILU(p) method) splitting schemes
as well as approximate inverse preconditioning approaches, see
Fig. 2.



Fig. 2. Detail of the PARALUTION library architecture (Lukarski, 2014).
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PARALUTION also features different matrix formats which are
crucial for GPU (Graphics Processing Unit) internal bandwidth
exploitation. Furthermore, it offers several hardware backends for
execution on multi/manycore CPU and GPU devices. Due to its gen-
eric and flexible design, it allows seamless integration within any
scientific software package, such as COBAYA3 (Trost et al., 2014)
and the present AZKIND project (Gómez-Torres et al., 2015).

While there are several scientific libraries for our purpose of
speeding up the computation time of the sparse linear systems
solution procedure, such as ViennaCL (Rupp et al., 2010), Intel
MKL (Intel Math Kernel Library (MKL), 2016), AMD Core Math
Library (Core Math Library (ACML), 2016), Nvidia cuSPARSE
(NVIDIA cuSPARSE Library, 2014), or the new release of NVIDIA
OpenACC Toolkit (NVIDIA OpenACC Library, 2015), only the PARA-
LUTION library features the high portability of both, code and
obtained results, on modern state of the art hardware as one of
its key features.

Nowadays, multi-core CPUs (OpenMP, MKL), CUDA supporting
GPUs and OpenCL capable hardware (Intel Xeon Phi, AMD GPUs)
support PARALUTION library. This offers the possibility to switch
between different architectures without modifying any line of
existing code and thus exploiting the available computational
power of almost any computer system. This implies that software
developers do not necessarily have to deal with architecture-
related programming models.

PARALUTION comes with a plug-in support for FORTRAN, Open-
FOAM and Deal.II packages. The FORTRAN plug-in makes possible
to communicate FORTRAN- compiled libraries with the C++-
compiled library with the use of an appropriate interface module.
The FORTRAN plug-in was integrated in the specific project
AZKIND to be run in different architectures.

4.3. Parallel processing implementation

Given a particular reactor core configuration, the AZKIND code
has the option of simulating a steady state (SS) nuclear reactor con-
dition, a dynamic case using previously generated initial steady
state data as an input, or simulating a steady state plus a nuclear
reactor dynamics calculation. The diagram in Fig. 3 shows how
AZKIND has been constructed including the implementation of
the PARALUTION FORTRAN plug-in.
On the left side of Fig. 3, a dynamic calculation is performed
using the PARALUTION solver called in AZKIND with the use of
the interface module. The AZKIND flowpath is shown in the right
side.

The dynamic calculation is performed sequentially for each
time step, until the total interval ð0; T� is completed. Here, it is
important to point out that in the original AZKIND code the Bi-
CGStab solver was implemented using the reference (Van der
Vorst , 1992), working in a serial computational process. The pre-
conditioning matrix was constructed with the inverse of the square

root of each diagonal matrix element, ð ffiffiffiffiffi
aii

p Þ�1. Section 6.2 contains
brief details about a verification task to prove the good functional-
ity of parallel process implementation.

AZKIND works with vector arrays for each x; y; z, and c direction
(see Fig. 1), while PARALUTION receives full arrays only. Then, first
of all, it was necessary to create a subroutine to write the AZKIND
matrix A in a Matrix Market format (Matrix Market, 2016), ready to
be read by the PARALUTION solver. The first implementation of the
FORTRAN plug-in was writing the matrix in Matrix Market format
in a file allocated in the hard disk and the procedure in AZKIND
opened the file and read the matrix from the file to be assigned
to an array in AZKIND an to be transferred to PARALUTION via
the interface module between FORTRAN and C/C++. The procedure
was modified to eliminate the wasting time tasks of writing and
reading in a file. Now the matrix coefficients are computed and
allocated in the corresponding array (computer’s memory) that is
transferred to the PARALUTION solver via the module interface.

Also, the searched solution vector ~v and the RHS vector ~b were
constructed by concatenating the respective AZKIND directed-
arrays, for each time-step before calling the PARALUTION solver.

In order to complete the algorithm on each time-step, it was
necessary to create a subroutine to de-concatenate the reached
solution vector ~v to have directed-arrays in order to continue the
AZKIND procedure for each x; y; z, and c direction to update the
neutron flux, recalculate the new delayed neutron precursors con-
centration, and to compute the new fission power rate; continuing
this cycle until the time interval ð0; T� is completed.

The process with PARALUTION solver implemented is as fol-
lows: AZKIND reads the input data and generates A, initial ~v , and
RHS~b. PARALUTION FORTRAN plug-in reads the matrix in COO for-



Fig. 3. AZKIND flowpath with PARALUTION parallel processing.
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mat (Matrix Market, 2016), receives the vectors ~v and ~b and
assigns the arrays memory. The plug-in calls the paralution_solver
which is comprised of the ConvertTo() routine and the numerical
solver bicgstab. The paralution_solver execution time accounts
for these two processes running on GPUs. Before the execution of
BiCGStab, the matrix COO format is converted to CSR format. In
order to be able to perform direct solver execution time compar-
isons, the paralution_solver subroutine was temporarily modified
to account only for the time spent by the numerical solver
BiCGStab.

5. AZKIND for nuclear reactor steady state calculations

With the AZKIND code in a modern version some verifications
were made using three nuclear fuel assemblies typical of a boiling
water reactor (BWR). The nuclear data for the fuel lattices were
generated with the Monte Carlo code SERPENT (Leppanen, 2007).
These nuclear data for each lattice were supplied to AZKIND for
nuclear calculations of the full assemblies.

Fig. 4 shows the axial (z) zones for the fuel assemblies where
the numbers in each zone represent the material type for the
respective lattice. In the right side appears the cross section (xy-
plane) of the fuel assemblies. The assembly A is homogeneous for
having the same material along the axial nodes, whereas the
assemblies B and C are heterogeneous.

The xy-mesh used for calculation of the neutrons multiplication
factor k1 was made by dividing x and y directions in two intervals.
The z-mesh assumed was 25 axial nodes.

In the following table there is a comparison of the k1 values
obtained with AZKIND and SERPENT:

The results generated with AZKIND are considered acceptable in
comparison to those obtainedwith SERPENT. It is necessary to point
out that the reason of the differences is because AZKIND is a neu-
tron diffusion solver and it has been compared with a transport like
solution obtained with Monte Carlo technique. See (Table 2).
6. High performance computing in AZKIND

6.1. Generation of matrices

Although the results with AZKIND for the three assemblies in
Fig. 4 are acceptable, for simplicity in the construction of the input
files for AZKIND, the basis was the homogeneous assembly A con-
sidering only material 1 along the 150 axial inches. This simplifica-
tion does not reduce the computing challenge, since the computing
complexity depends on the xyz-meshing.

The simplest case was considering only one assembly (array
1� 1) where the xyz-mesh has 10 intervals in x-direction, 10 inter-
vals in y-direction and 150 intervals in z-direction or axial
direction.

Table 3 shows the matrix dimensions for different fuel assem-
blies arrays, where the largest case is the 10� 10 array (100
assemblies), which can be considered as one-quarter of a small
BWR reactor core.

In particular, for one-quarter reactor core, a smaller matrix
could be used for a real reactor simulation if the z-mesh is changed
from 150 to 25 axial nodes, as it is used in current BWR reactor
core simulations. With this change the matrix dimension is
2,030,000 with 22,060,000 nnz elements; comparable to the 4� 4
array dimension. Nevertheless, the fine z-mesh of 150 axial nodes
was used in order to challenge the hardware capabilities and the
performance of the AZKIND code with parallel computing.
6.2. Parallel versus serial results

The numerical solver used in AZKIND with serial process was an
implementation, documented in Rodríguez-Hernández (2002), of
the algorithm BiCGStab published in Van der Vorst(1992). The pre-
conditioning matrix was constructed by multiplying the original
main diagonals by the inverse of the square root of each diagonal
matrix element; and as explained in Section 4.3, the parallel



Fig. 4. Typical fuel assemblies for a BWR and a cross section view.

Table 2
Comparison of neutron multiplication factor k1 .

Assembly SERPENT AZKIND Error (pcm)

A 0.83541 0.83899 430
B 1.11991 1.11546 390
C 1.09758 1.09392 330
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process in AZKIND is performed with the BiCGStab solver of
the PARALUTION library, using the matrix preconditioner
MultiColoredILU.

Three basic verification tests were used to verify independent
results and consistency between the serial and parallel processes
in AZKIND: (a) Perturbation null test; (b) Reproducibility test;
and, (3) Infinite array test. Below there is a description of each test,
together with a brief explanation of key issues solved in the paral-
lel process implementation.

(a) Perturbation null. This test is to verify that the physical sys-
tem (nuclear reactor core) remains absolutely without any
change respect to the initial system condition, when a tran-
sient of duration T seconds is simulated with no perturba-
tion at all. This test was successful in the serial module of
AZKIND keeping the system power unchanged. However,
when this test was applied to the parallel module some
slight deviations were present because the system power
was changing gradually: some adjustments were done in
the use of double precision variables, and in the generation
of the matrix that it is delivered to BiCGStab PARALUTION.
The test was successful. The intent of this verification task
is to reveal any error in the code running a transient without
any change in the variables of the nuclear system: a steady
state must be observed from the start to the end of the sim-
ulation time.
Table 3
Matrix dimensions for different fuel assembly arrays.

Assemblies 1� 1 2� 2

Matrix dimension 126,200 492,800
Non-zero elements 1,332,400 5,305,600
(b) Reproducibility. This test is to verify that for each particular
matrix size the results with serial and parallel process are
the same. A power transient of duration T is simulated for
a perturbation introduced in the reactor system. In the first
trials with the 1� 1 case (one nuclear fuel assembly) some
differences were noted from the 3rd to the 5th decimal
place. Larger differences were generated for the 6� 6 and
the 10� 10 fuel arrangements. After looking for some proce-
dural difference between both computational processes, it
was found that the absolute convergence criteria were dif-
ferent. Both criteria were set to 10�15 and the simulated
transient results were equal in both computational pro-
cesses; and as was expected, a significant difference in com-
puting time was noted between serial and parallel processes
(see Table 5 in Section 7).

(c) Infinite array. At the boundary of each array of assemblies
the condition is to have neutron flux current equal to zero.
This test is to verify that the power changes in a transient
are equal for all the configurations, from 1� 1 to 10� 10
arrays of nuclear fuel assemblies. The result of this test
was successful. Table 4 shows the results for the smallest
an biggest arrays.

7. Numerical results

In the numerical experiments two types of simulations were
performed. The first experiment was to observe the computational
behavior of three kinds of GPUs by executing AZKIND with the dif-
ferent matrix sizes described in Section 6.1. The second experiment
was to simulate a power transient in an actual reactor core with a
fuel load of a boiling water reactor. The GPU cards used to run
AZKIND with parallel processing were:
4� 4 6� 6 10� 10

1,947,200 4,363,200 12,080,000
21,174,400 47,606,400 132,160,000



Table 4
Serial vs Parallel for the inifinite array test showing a power transient.

Time 1� 1 serial 1� 1 parallel 10� 10 serial 10� 10 parallel

0.1 1.000000 1.000000 1.000000 1.000000
0.2 1.066839 1.066839 1.066839 1.066839
0.3 1.148600 1.148600 1.148600 1.148600
0.4 1.244889 1.244889 1.244889 1.244889
0.5 1.359462 1.359462 1.359462 1.359462
0.6 1.497863 1.497863 1.497863 1.497863
0.7 1.515753 1.515753 1.515753 1.515753
0.8 1.522855 1.522855 1.522855 1.522855
0.9 1.529011 1.529011 1.529011 1.529011
1.0 1.535103 1.535104 1.535104 1.535104
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1. GeForce GTX 860M with 640 processor cores and memory of
2 GB.

2. Tesla K20c with 2496 processor cores, and 4.8 GB of memory.
3. GeForce GTX TITAN X with 3072 processor cores, and 12 GB of

memory.

7.1. Matrix sizes

Table 5 presents serial and parallel results for ‘‘one time-step”.
The AZKIND simulations were performed using the same power
transient as it was used for the results in Table 4, i.e, 1 s divided
in ten time-steps. Different solution times were observed for each
time-step because as the power perturbation evolves, the algebraic
system is different, giving different numerical behavior for each
time step. Therefore, it was decided to get an average solving time
for each array case in Table 5.

As already expected, the serial executions have very large times
compared to the execution times of the parallel processing using
the described equipment. The execution times in parallel process-
ing also increase when matrix dimension increases, but these
times are reduced when processors with more cores are used.

In Table 5, No memory means not enough memory in the GPU
card to load very large matrices.

For the analysis of the computing acceleration or ‘‘speedup”, a
definition of speedup is used Nesmachnow (2015), known as rela-
tive speedup or speedup ratio:

S ¼ T1

Tn
;

where T1 is the computing time using a single processor (serial cal-
culation) and Tn is the computing time using n processor cores. The
speedup achieved for each GPU using different matrix sizes is as
follows,

Tables 5 and 6 show an excellent computing acceleration,
despite of the speedup for small matrices that is comparable for
the three computer architectures used. It also can be seen that
the speedup values do not have a linear behavior. The non-linear
behavior of the speedup is because although more GPU processor
cores are used with massive data transference to and from the
GPU, a data traffic delay is present in the communication bus
between the GPU and the CPU.

7.2. Reactor power transient

Fig. 5 shows the distribution of nuclear fuel assemblies in the
core of a boiling water reactor. The colors represent different types
of fuel assemblies.

In the plane xy the mesh is 24� 24, being coincident with each
fuel zone; and axially, there is a partition with 25 intervals.
The matrix generated for this coarse mesh (1,274,304 nnz) is
comparable to the matrix of the fine mesh created for the case of
a unique assembly. See Table 5.

Before the simulation of a reactor power transient it was neces-
sary to calculate the reactor steady state and compare the result
with SERPENT. Table 7 shows the comparison of keff between
AZKIND and SERPENT. The result for keff with AZKIND is quite
acceptable, however the most useful result from this BWR steady
state calculation is the neutron flux profile in the reactor core. This
neutron flux is the departing point for a transient simulation.

Then, a power transient is simulated when the capability to
remove neutrons is changed in the assembly identified as perturbed
in Fig. 5. The neutrons removal capability is increased in the form
of a step function during 3 s of the total power transient duration,
which is 5 s, giving a reactor power reduction. The time step used
in this simulation was 0.1 s.

Fig. 6 shows the power behavior over time, departing from a
normalized value of 1.0 and reducing the power reactor almost
to 80 percent of its original value.

This reactor power transient was simulated with the AZKIND
code running on the three different GPUs listed at the beginning
of this section.

Fig. 7 shows in logarithmic scale the time spent by AZKIND run-
ning in sequential mode (left bar) and the times spent by each GPU
card.

As it can be seen in the logarithmic scale, serial processing is not
competitive with parallel processing because it is demonstrated
that serial computing employs lots of time. In Fig. 7, GTX refers
to the GeForce GTX 860M device. In a comparison between GPUs,
the GTX card with 640 processor cores employs the double of time
compared to the Titan card with 3072 processor cores.
8. Conclusions and outlook

The most important issues derived from this work are summa-
rized as follows:

With the aim of having a comprehensive implementation of
parallel computing in AZKIND, the elements of the verification task
are deemed to be useful to provide certainty that the results from
serial and parallel simulations are mutually consistent and enough
confidence was obtained in order to continue with high perfor-
mance computing.

Considering a typical BWR nuclear fuel assembly it was possible
to generate, from a single assembly up to large arrays of assem-
blies, increasing sizes of matrices for each case. In this sense, it
was observed that parallel computing times are very small com-
pared to the sequential computing, and that highly noticeable
speedup is obtained using a high number of processor cores,
mostly for large algebraic systems.



Table 5
Parallel processing time (seconds) in different architectures.

Assemblies 1� 1 2� 2 4� 4 6� 6 10� 10
Matrix dimension 126,200 492,800 1,947,200 4,363,200 12,080,000
Non-zero elements 1,332,400 5,305,600 21,174,400 47,606,400 132,160,000

Serial 24 124 372 994 2471
GTX 860M 2.1 7.9 31.3 No memory No memory
Tesla K20c 1.3 4.0 16.6 40.1 No memory
GTX TITAN X 1.0 2.6 10.4 26.7 95.4

Table 6
Speedup comparison (S).

Assemblies 1� 1 2� 2 4� 4 6� 6 10� 10

GTX 860M 11 16 12 – –
Tesla K20c 18 31 22 24 –
GTX TITAN X 24 48 36 37 26

Fig. 5. Map of nuclear fuel assemblies in the core of a BWR.

Table 7
Comparison of neutron multiplication factor keff .

Case SERPENT AZKIND Error (pcm)

BWR core 1.09472 1.09291 165

Fig. 6. Power transient profile for 5 s of simulation.

Fig. 7. Time consumption for serial and parallel processing.
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The actual version of AZKIND has been demonstrated to be a
computational basis with high computing capabilities to produce
prompt results for real nuclear reactor calculations, as it was
demonstrated in the power transient simulated.

The AZKIND neutronics code is envisaged to receive more
developments to become a useful and powerful tool for the analy-
sis of light water reactor cores with its strong capability to perform
parallel computations.

In this work it is also demonstrated the key features of the
PARALUTION library, like portability and scalability for its integra-
tion in specific FORTRAN projects such as AZKIND.

The experience gained from this work will be applied to imple-
ment parallel processing in other AZTLAN Platform codes: the neu-
tron transport code AZTRAN, and the neutron diffusion code
AZNHEX for hexagonal geometry. From the experience with
AZKIND, the generation of the system matrix A is identified as a
key issue due to its generation is a very specific task involving a
significant effort.
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